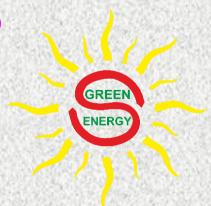
ENERGY AUDIT REPORT

2021-22

in compliance with the statutory requirements under the NAAC accreditation procedures



Principal Lead Auditor: Mallikarjun A Kambalyal. CEA, ISO 50001, 14001 Lead Auditor.

SUNBSHUBH TECHNOVATIONS PVT LTD

120-2, LGF, 'A' wing, IT Park, Hubli – 580029. Karnataka. India. German off: Neuer Weg 166, 47803 Krefeld, Dusseldorf. Germany Anbieter-Nr 1041388

Website: <u>www.sunshubhrenewables.ocm</u> Email: ceo@sunshubhrenewables.com

ENERGY AUDIT REPORT

THOUGHT FOR EVERY MOMENT

ABOUT SUNSHUBH TECHNOVATIONS PRIVATE LIMITED

Sunshubh Technovations Private Limited is registered in the year 2020 and has evolved from initial proprietary concern, Sunshubh Renewables & Research Centre. Sunshubh has been in operation since 2008. Sunshubh today is led by a team of well experienced Certified Energy Auditors and tech- savvy young engineers.

We believe in Identifying opportunities and executing solutions based on need with highest priority to Energy conservation over efficiency.

Since beginning, Sunshubh has been growing and today, we have wide range of clientele In the field of Industry : Tool room, Chemicals and refinery, Mining, Health, Hospitality, Food processing, Infrastructure and Educational institutions under NAAC compliance. Our approach has been very aggressive in equipping ourselves with the latest instruments.

After decade of professional experience, we restructured ourselves and thus the formation of a Private Limited company on 22nd July 2020.

Today we have with us the technical team comprising three Certified Energy Auditors, One Certified Energy Manager and support team of young and enthusiastic engineers to comply to the client requirements.

POLICY MATTERS

Learning from our training in Germany and their policies, SUNSHUBH does not supply any energy saving equipment's or systems. However, we do stand up to support and execute the measures to prove our findings right. This is mandatory to assure the client that we do not market any self-centred product or orient the Audit assignment to sell any third party product. Meaning to say we stand neutral to all methodologies in the interest of adopting best technologies.

We strongly believe in sharing our knowledge and training inhouse manpower for continual improvement in energy flow.

We have set a policy not to hire the instruments from third party but to procure every small or big ones to do justice to our clients.

THOUGHT FOR EVERY MOMENT

CONTENTS LIST OF ONSITE PHOTOS AND DISCUSSIONS	6
EXECUTIVE SUMMARY	7
CRITERION VII – INSTITUTIONAL VALUES AND BEST PRACTICES	9
PART 1 – GENERAL	18
CARBON FOOTPRINT - GREEN PLEDGE	18
ACKNOWLEDGEMENT:	
ENERGY AUDIT COMPLETION CERTIFICATE	
ONGOING STATUS:	27
WHY IS THIS AUDIT BEING CARRIED OUT?	27
WHAT IS AN ENERGY AUDIT?	27
WHY SHOULD YOU GET AN ENERGY AUDIT?	28
ENERGY AUDIT OBJECTIVES	29
THE GOALS OF ENERGY AUDIT	30
UNDERSTAND THE SCOPE OF AUDIT	31
Geography	33
Climate	34
Pollution control	35
Waste management	36
Culture	38
LIMITATIONS:	
PART 2 -TECHNICAL	41
DISCUSSIONS ON EXECUTIVE SUMMARY:	41
RENEWABLE ENERGY	42
SENSOR TECHNOLOGY	43
NATURAL LIGHTING	47

THOUGHT FOR EVERY MOMENT

LIGHT INTENSITY SENSOR REQUIREMENT	47
BATTERY MANAGEMENT	. 48
BATTERY PLACEMENT:	48
BATTERY REGENERATION	. 52
NECESSITY AND ISSUES	53
RISK IDENTIFICATION OF LEAD-ACID BATTERIES	54
LEAD	56
SULFURIC ACID	57
CADMIUM	
SAFETY TIPS	58
VENTILATION	58
NATURAL VENTILATION	. 59
WHY SUPER ENERG Y EFFICIENT CEILING FANS?	60
SAFETY	. 63
WHERE CAN PANELBOARDS AND LOAD CENTERS BE LOCATED IN MY BUILDING?	. 64
ELECTRICAL INSULATING MATS	66
	. 68
ACTION PLAN SUMMARY:	. 70
MODE OF ACTION:	. 70
NOTES:	.71

THOUGHT FOR EVERY MOMENT

LIST OF ONSITE PHOTOS AND DISCUSSIONS.

Figure 1 - Ecological pyramid	9
Figure 2 - Innovation key pointers	10
Figure 3 - Bureau of energy Efficiency Regd No: EA3485	22
Figure 4- ISO Certified Lead Auditor. Certificate No: 47730	23
Figure 5- ISO Certified Lead Auditor. Certificate No: ENR-00253448	24
Figure 6 - Manager training programme, Germany	25
Figure 7 - Fit for partnership with Germany	26
Figure 8 - Thermographic images of 11 kV substation	42
Figure 9 - Need for occupancy sensor	44
Figure 10 - Lighting need for sensor	44
Figure 11 - T5 & T8 tube lights with Electromagnetic choke	45
Figure 12 - Equipment load management	45
Figure 13 - Use of natural lighting where possible	47
Figure 14 - Use of Light colored curtains and avoided blocades	48
Figure 15 - Battery placement, Need cross ventilation	49
Figure 16 - Thickly populated & stacking in unventilated area	50
Figure 17 - Galvanic reaction causing damage to battery life	51
Figure 18 - Thermal inspection of the battery bank	51
Figure 19 – Blocked cross ventilated class room	60

THOUGHT FOR EVERY MOMENT

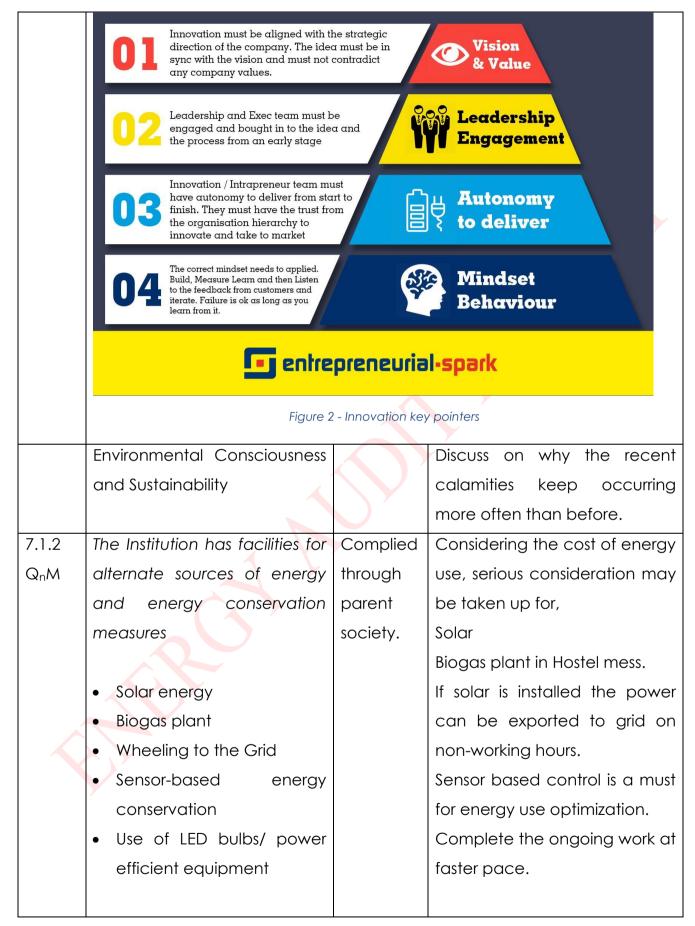
EXECUTIVE SUMMARY

Sr No	Observation*	Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
1	Power Consum ption	PF Penalty	Energy & revenue loss	Install Capacitor bank.	Rs.50,000/- approxima tely	Avoided revenue penalty	
2	Solar Power	Suggest to insta times.	III Solar Powe	r to minimise us	e of energy d	uring Offgrid	7.1.2
3	Occupa ncy sensor	Wastage of power	High	Occupancy sensor based switching	₹1500 per room	Resulted ROI of one year.	7.1.2
4	Battery placem ent	Concealed enclosure. Battery shell in conductor loop	Low performan ce & self- discharge.	Design the stacking arrangemen ts.	In house resources	25% of the cost of the batteries.	7.1.2, 7.1.6
5	Battery regener ation.	Short life span	300% of the cost of the battery.	Subject all batteries to regeneratio n made.	Rs.20.00 Lacs or as per user agreement	300 %	7.1.2, 7.1.6
6	Electrica I	Old tube lights	High energy consumers	LED lights of appropriate ratings.	Rs.80/- to Rs.250/- per unit	Rs.175/-per tube per annum. ROI of 1 years.	7.1.6

THOUGHT FOR EVERY MOMENT

Sr No	Observation*	Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
7	Natural Lighting	Un cleaned windows and ventilators, forced switching on of tube lights	High energy bills	Clean the windowpan es and allow maximum natural light penetration.	Nil, part of routine, In house manpower	Substantial cost of energy bills on lighting.	7.1.2, 7.1.6
8	Natural Ventilati on	Permanently closed ventilators.	Creation of hot air pockets below the ceiling.	Open the Ventilators for easy exit of hot/warm air from the rooms.	Nil, In house manpower	Eliminates use of Electrical Fans and Substantial cost of energy bills	7.1.2, 7.1.6

* For details, please follow the discussions in the report.


THOUGHT FOR EVERY MOMENT

CRITERION VII – INSTITUTIONAL VALUES AND BEST PRACTICES

Metric	Description	Complian	Initiatives required
No.		Ce	
7.1.1	Measures initiated by the	Partly Consolition	Our The concept of home
	Institution for the promotion of	Complied	energy management may be
QIM	gender equity during the last		initiated for the women. The
	five years.		typical illustration is
	Annual gender sensitization		reproduced.
	action plan		
	Specific facilities provided for		
	women in terms of:		
	Safety and security - Energy		
	Subarctic regions Temperate regions Tropical regions Correct forest	Grassie Gra	Slands ing dryness

Key Indicator - 7.1 Institutional Values and Social Responsibilities

THOUGHT FOR EVERY MOMENT

THOUGHT FOR EVERY MOMENT

7.1.3	Describe the facilities in the	Complied	Energy consumption details
QIM	Institution for the	partially	need to be monitored and the
	management of the following	wrt	benefits of avoided
	types of degradable and non-	minimising	accumulated energy use and
	degradable waste (within 500		power demand should be
	words)		established.
	Solid waste management		
	Liquid waste management		
	Biomedical waste		
	management		
	E-waste management		
	Waste recycling system		
	Hazardous chemicals and		
	radioactive waste		
	management		
		$\langle \rangle$	
7.1.4	Water conservation facilities	Complied	The institution should consider
	available in the Institution:		in measuring the energy and
QnM		Open	power demand at various
	Rain water harvesting	ground	ground water table to
	Borewell /Open well recharge	percolati	demonstrate the impact of
	Construction of tanks and	on,	increased water table by
	bunds	Open well	rainwater harvesting methods.
	Waste water recycling	restoratio	Kindly refer to the article listed
	Maintenance of water bodies	n.	at the end of the table.
	and distribution system in the	Percolatio	
	campus	n pond	
		near to	
		open well	
7.1.5	Green campus initiatives	Partially	With disciplined vehicle
	include (4)	complied.	parking the reduction in fuel

THOUGHT FOR EVERY MOMENT

Q _n M	7.1.5.1. The institutional		consumption can be
	initiatives for greening the		demonstrated in the college
	campus are as follows:		campus. The students can be
	Restricted entry of		given a task of conducting
	automobiles		such practical on field and a
	Use of Bicycles/ Battery		competition should educate
	powered vehicles		the society.
	Pedestrian Friendly pathways		
	Ban on use of Plastic		
	landscaping with trees and		
	plants.		
7.1.6	Quality audits on environment	Complied	The audit findings should be
	and energy are regularly		predominantly projected by
QnM	undertaken by the institution		action from all stake holders of
	(5)		the institution.
	7.1.6.1. The institutional	$\langle \rangle$	
	environment and energy		
	initiatives are confirmed		
	through the following		
	1.Green audit		
	2. Energy audit		
	3.Environment audit		
	4.Clean and green campus		
	recognitions/awards		
	5. Beyond the campus		
	environmental promotional		
	activities		
7.1.7	The Institution has disabled-	The	
	friendly, barrier free	initiatives	The demand for muscle power
QnM	environment	have	to climb the ramp may be
		been	considered as one such case

THOUGHT FOR EVERY MOMENT

	Built environment with	considere	and ideally establish the
	ramps/lifts for easy access to	d.	gradient of the ramp.
	classrooms.		
	Disabled-friendly washrooms		
	Signage including tactile		
	path, lights, display boards		
	and signposts		
	Assistive technology and		
	facilities for persons with		
	disabilities (Divyangjan)		
	accessible website, screen-		
	reading software,		
	mechanized equipment		
	Provision for enquiry and		
	information: Human		
	assistance, reader, scribe, soft	$\langle \rangle$	
	copies of reading material,		
	screen reading		
7.1.9	Sensitization of students and	Need to	
	employees of the Institution to	explore.	The sensitization of switching off
QIM	the constitutional obligations:		the non-required electrical
	values, rights, duties and		appliances and devices should
	responsibilities of citizens		be encouraged. Like
	Describe the various activities		organizing the inhouse
	in the Institution for inculcating		competition.
	values for being responsible		Every student to table their
	citizens as reflected in the		energy bills in the previous year.
	Constitution of India within 500		The savings in the forth coming
	words.		year should be recorded and
			an energy ambassador award
			be shouldered on the top

THOUGHT FOR EVERY MOMENT

			students. This activity brings in
			the sense of responsibility,
			accountability and importantly
			knowing their energy use and
			abuse.
7.1.10	The Institution has a	Complied	A range of activities can be
QnM	prescribed code of conduct		brought in just as discussed in
	for students, teachers,		7.1.9 above.
	administrators and other staff		
	and conducts periodic		
	programs in this regard.		
	The Code of Conduct is		
	displayed on the website		Y
	There is a committee to		
	monitor adherence to the	$\langle \rangle$	
	Code of Conduct		
	Institution organizes		
	professional ethics programs		
	for students,		
	teachers, administrators and		
	other staff		
	Annual awareness programs		
	on Code of Conduct are		
	organized		
7.1.11	Institution celebrates /	Complied	In today's practices, the
QIM	organizes national and		celebration has been formal.
	international commemorative		The actual celebration has to
	days, events and festivals		be yearlong. The theme for the
			year has to be laid and the
			activities should be conducted

THOUGHT FOR EVERY MOMENT

	Describe the efforts of the		and on the day of celebration
	Institution in celebrating		the selective activities be
	/organizing national and		carried out. Just to illustrate,
	international commemorative		Consider the Republic Day.
	days, events and festivals		We celebrate the flag hoisting
	during the last five years within		and with cultural activities.
	500 words		Consider the week-long
			program where in, students
			can discuss what is the
			Republic Day. How the final
			draft got to be written and who
			all are the members of the draft
			committee.
			https://en.wikipedia.org/wiki/C
			onstitution_of_India
7.2.1	Describe two best practices	Complied	
QIM	successfully implemented by		When the listed activities from
	the Institution as per NAAC		7.1.1 to 7.1.11 are complied,
	format provided in the		the institute can have many
	Manual.		creative best practices and the
			achievements can really bring
			in the name, fame and the
			recognition and appreciation
			not just on records but on
			monetary contributions as well.

THOUGHT FOR EVERY MOMENT

August 2005 Vol 6 Issue 1

EDITORIAL BOARD

Patron-in-Chief: Shri Vilas Mutternwar Hon'ble Minister of State (MNES) Patron: Shri A.M. Gokhale, Secretary, MNES Editor-in-Chief: Shri Debashish Majumdar, Managing Director, IREDA Executive Editor: Dr P. Venkata Ramana, Winrock International, USA Editorial Coordinator: Mr Arvind Reddy, Winrock International India

MEMBERS

Ms Anita Ahuja, Conserve Shri A.K. Asthana, National Productivity Council Ma Leena Mehendale, PCRA Shri B.V. Rao, IREDA Shri Brahmanand Mohanty, Energy Efficiency Specialist Shri Bhaskar Natarajan, India-Canada Environment Facility Shri S. Padmanaban, USAID/India Shri V. Raghuraman, Confederation of Indian Industry Shri S. Ramaswamy, GTZ - India

WINROCK EDITORIAL TEAM

Content Copyedit Lavout & Design Mathews Thavil Bhawani Shankar Jaison Jose

The views expressed in the articles are those of the authors and do not necessarily reflect those of IREDA or WII

इन लेखों में प्रकट विचार मुलतः लेखकों के हैं तथा यह आवश्यक नहीं है कि इरेडा या विनरौक भी इन विचारों से सहमत हो ।

This publication is supported by

Indian Renewable Energy Development Agency IREDA is a financial institution set up by MNES to provide concessional REDA financial support to energy efficiency/ conservation and renewable energy sectors. For more information, see IREDA web site www.iredaltd.com or contact: Core-4A, East Court, 1# Floor

India Habitat Centre, Lodhi Road, New Delhi-110003 Tel: 91-11-2468 2214-21 Fax: 91-11-2468 2204 E-mail: efficiency@rediffmail.com Website: www.iredaltd.com

FROM THE EDITOR-IN-CHIEF

The simple economics of water and energy security

t is estimated that the global annual use of commercial energy is about 400 Quads (quadrillion BTUs). The sun pours an additional 6 million Quads of radiant energy into the Earth's atmosphere each year. Thus in absolute terms, energy available is several orders of magnitude higher than demand. Yet, the world continues to struggle against an acute energy crisis. This leads one to believe that the problem is not merely of energy availability but rather a problem of affordability. Energy is a matter of pure economics, of demand and supply - at a cost.

A similar principle applies to water. Though roughly 80 percent of the Earth's surface is water, cheap potable and clean water is simply beyond the reach of millions across the world. Potable water sourcing, treatment, and distribution require considerable amounts of energy. Access to water is therefore closely linked to energy availability and affordability.

This close interdependence between energy and water needs to be clearly recognized and the nexus addressed suitably at the policy level. The first and foremost priority of any energy policy should be the wise, efficient use of whatever energy supplies are available. Similarly, priority should be given to the efficient use of whatever water supplies exist. Once the issue of efficient use has been tackled, focus can then be shifted on creating new energy and water supplies that meet sustainability and environmental requirements. And this may not be as difficult to achieve as it appears.

As in the case of energy use, the difficult part is reducing the quantum of water use while maintaining the level of benefits both for the customer and the utility. If this can be addressed. water utilities can save money as the reduced demand effectively creates more system capacity. With decreasing demand, the water utility effectively avoids additional investments in new facilities and equipment. Reduced volume of water flowing through the system has the attendant advantage of reduced frictional energy losses, thereby reducing the cost of pumping. This leads to a win-win situation for both the consumer and the utility, with the consumer benefiting through the reduced cost of delivery, diminished chances of water shortfalls, and the utility benefiting from decreased likelihood of major investment expenditures.

Needless to say that all this also saves energy. In rural areas, a large number of irrigation pump sets are either operated at highly subsidized electricity tariff from the power utilities or at no cost at all, encouraging the use of poorly designed inefficient pump sets which are over-rated and over-used. Replacing these pump sets with energy-efficient ones is one option, but who bears the cost? Another option is rainwater harvesting. For every one foot increase of the water table one achieves an approximate savings of 1 percent power.

Which means one gets more for the same energy use. That's simple economics.

MA male Debashish Majumdar Managing Director, IREDA

The Bulletin on Energy Efficiency August 2005 Vol 6 Issue 1

THOUGHT FOR EVERY MOMENT

Water-Energy: two faces of a coin

There is a direct relationship between water and power. A reduced water table is directly proportional to the square of the increased electrical power consumption, says the author

e all presume that if the dams and reservoirs are full then electrical power could be available in plenty. However, we tend to ignore that the demand for electrical power has been growing at a much faster rate than what we can produce and, hence, any amount of rain and or electrical power generated is insufficient to meet our demand. Most thermal power plants are running low owing to a short supply of coal. So where are we?

The recent changes in temperature and erratic rainfall has a direct relationship with urbanization. With increased urbanization and industrialization, we have only created a greater need for energy. This energy is sourced primarily from fossil fuels such as coal and nuclear power plants. In the absence of rains, the only means of generating electrical power is by burning fossil fuels. The burning releases emissions into the atmosphere, resulting in increased CO, concentration in the troposphere, and subsequently the greenhouse effect. The disturbed rainfall pattern is a result of this global warming.

The demand for power can be classified into four areas: agricultural need-based; industrial need-based; commercial need-based; and domestic need-based.

Today, a number of agencies such as the Bureau of Energy Efficiency (BEE). Petroleum Conservation Research Association (PCRA), the National Productivity Council (NPC) and a host of voluntary organizations, are working at ensuring energy efficiency in industries. But while the commercial and domestic need-based sectors have the potential little is being done in this area. These sectors need a lot of education, motivation and awareness.

The agricultural industry needs the greatest attention, mainly in irrigation pump-sets (IPs). Most IPs are being operated free or on highly subsidized electricity supply. But eventually they consume a lot of power.

For instance, there are 16,000 irrigation pumps reportedly being operated under the HESCOM (Hubli Electric Supply Company), a division in North Karnataka. If, on an average each 5 HP pump consumes 3.73 kW of power per hour (there are actually a greater number of 10 HP pumps), the total consumption is as below:

For 10 hours per day = 37.30 kWh For 200 days of watering = 7,460 kWh (7.46 MWh/pumpset)

For 16,000 sets, it is 119,360 MWh which means, 358,080 MWh of power generation at the power plant.

To reduce this consumption, should the IP users be asked to change over to energy-efficient sets? The question is:

- can the users afford the change?
- are they willing to accept the new brands of sets imposed on them?
- can the sale of inefficient IP sets be controlled?

Or should measures be adopted where the users may not use the IPs at all? Or can power consumption be reduced?

One good method is to reduce power consumed by IP sets by increasing the water table. If the water table can be increased by, say, 13 ft, then for the same 150 LPM delivery we will need a 4 HP (2.984 kW), and the savings for 16,000 IP sets would be 23,872 MWh, which is 20 percent approximately 1.5 percent power saving for every feet of increase in the water table. This increase in water table can be achieved by adopting rainwater harvesting through either bunds or by natural

filtration tanks or by preventing pumping of water by making use of rainwater

Now who meets the cost of these programs is one big question. Let us see how the electrical supply company benefits: If the organization spends around Rs 5,000 per IP set, we have Rs 800 crore as the capital investment on rainwater harvesting. For an annual savings of 23,872 MWh of electrical power, a savings of Rs 9.55 crore at the rate of Rs 4 per kWh for every feet increase in the water table.

It is always better not to use energy than try and save energy.

When a process industry utilizes water for its operations, then this water has to be demineralized or softened To do this, it will need electrical power. Also due to dissolved solids and increased concentration, repeated breakdowns may happen, demanding periodic maintenance and scraping of industrial components, which means more energy consumption.

Now, greater the amount of rainwater harvested lesser will be the dissolved solids, which means less breakdowns and increased fuel savings. Once the fuel consumption comes down, the release of CO, into the atmosphere is also reduced. Reduced CO, means lesser effect on global warming. This will then lead to stable weather conditions and predictable monsoons. Once the ecological cycle is renewed, achieving a balance between industrial, agricultural and environmental growth is easy.

Water is a renewable source of energy and must be conserved.

Courtesy: Mallikarjun A. Kambalyal, President, Sunshubh Renewable Energy Foundation E-mail: mallu_solar@yahoo.co.uk

The Bulletin on Energy Efficiency August 2005 Vol 6 Issue 1

THOUGHT FOR EVERY MOMENT

PART 1 - GENERAL

CARBON FOOTPRINT - GREEN PLEDGE

(PROPOSED)

We the Principal, the staff and students, adopt responsible practices in our daily activities with due regard to the environment. We set and continually review objectives and targets for achieving our goal to protect our entire college premises in front, backyard and all other non-approachable areas of all primary and secondary pollutions.

We seek to compile with safety and environmental regulations to implement inhouse standards to improve our environmental performance. We commit ourselves to the safe operation of all our working habits, be it in classrooms, library, canteen, on road, off road, in-campus out-campus as well as at our place of stay. We adhere to reduce environmental load by efficiently using resources, saving energy, reducing waste, encouraging material recycle, with special emphasize to minimising emissions of greenhouse gases, ozone depleting substance and particle matter.

We endure to minimise environmental loads and adopt environmentally friendly technologies when ordering and purchasing necessary products and resources. We endure to attend educational programs and promulgate our close friends and colleagues to follow suite We endure to ensure that we recognize the essence of this Green policy by actively and aggressively conducting workshops and training to all in environmental concepts. We make wide ranging social contribution to close association with the students, teaching staff, administrative staff, housekeeping staff by disclosing environmental information and supporting environmental consumption.

-Sd-

Principal

(Indicative templet for display at all prominent areas, waiting rooms, canteen, library, relaxing areas in the campus.)

THOUGHT FOR EVERY MOMENT

ACKNOWLEDGEMENT:

SUNSHUBH TECHNOVATIONS PVT LTD., is pleased to express its sincere gratitude to the management of R V College of Engineering, Bengaluru, Karnataka for entrusting SUNSHUBH TECHNOVATIONS PVT LTD., with the assignment on Green Earth practices based on Educate, Practice, Advocate & Manage the resources in their educational organization.

We also wish to thank the officials and the maintenance staff for the help rendered during the energy flow study.

We would fail if we neglected to appreciate the sincere efforts put in by the 7th Criteria Team lead by the able and motivating Principal Dr K N Subramanya and the students who against all odds have kept the college premises clean to the possible limits. Without the crucial and significant support from the fellow teaching team the energy savings and carbon footprint reduction would not be a reality.

With the motivational support of the

	to Visver Technolo	svaraya	New Dolhi, Accredited By NAAC, Bengsharu And NBA, New Delhi			4			1				
					Servis	ce Purch	ase Order	PO No. / W		1 33000042	14.10		
Sanshabi #120-123	Name & Address th Technorations Pvt. Lt 2,133-2, W Block IT Park use Hubli - 580029 Kam	One Venter PAN	Number : 29AB					Purchase O GST Namb PAN Order Cum	eder Date at	22.09.202 20AAATR AAATR03 DNR	1 1975BALZP 198A gc of Engine	oring , R.V. Vidyan	ikchen Prot.
Dear Sir	r/Madam.			1. K.S	1	·	the share halves						
With	r'Madam, h reference to your qu	iotation, you are n	equested to take up th	e following Ser	vices as	per the de	tails given below.				28T		
		Service Code SAC				UOM	RateUnit	Amount		GST		GNT	Total
LNs.	Se	rvice Wark Descript	ice	Delivery date	Q17-				Rate (%)		Rate (%)	Amount	98,25
-				12.10.2021	1.90	ALI		\$3,300.00		7,497.00	Rate(%)	7,297.00 Amount	98,25
	nduction of Green Auffe in ervice No	SAC - Service 2	Short Trat	Delivery date	00.	LOW	RateVolt	Amerced \$3.300.00	Rate(%)	Amount 2,497.00		7,297.00	
1.54	ervice No			12 10 2021	1.00	AU	£3,300.00	\$3,300.00	9.00	2,497.55			
300	0110 99£397 Preferenced	Services		12.10.2021		_					On	ler Value(ENR)	
count in	Vords Rupees Nit	nety Eight Thousa	I taxes.	ety Four						1	Ori	ter Valuet(NR) Round off Total Value	91,25
sount in rms & Total va Delivery DElivery TDS will Invoice s You will	Prefessional WordsRuppets Nit Conditions: alue of Purchasie Ordi y Date: As mentioned y Pate: As aper detail Il be deducted as per should be submitted i I have to co-ordinate	nety Eight Thousa er is inclusive of a l above in Purchas s mentioned in Pu the standard.	II taxes. te Order for each iten rchase Order. tative at site during th	ety Four a.			he world				Ord	Round off	98,29
sount in rms & 0 Total va Delivery TDS will Invoice is You will Myson PA	Portensional Words:- Rupees Nit Conditions: alue of Purchase Ordi y Date: As mentioned Place: As per detail II be deducted as per should be submitted i I have to co-ordinate I have to co-ordinate toas, RV végendatas	nety Eight Thousa er is inclusive of a l above in Purchas s mentioned in Pu the standard.	II taxes. te Order for each iten rehase Order. tative at site during the	ety Four a.			he world				Ord	Rooad off Total Value	
sount in rms & 0 Total va Delivery TDS will Invoice is You will Myson PA	Portensional Words:- Rupees Nit Conditions: alue of Purchase Ordi y Date: As mentioned Place: As per detail II be deducted as per should be submitted i I have to co-ordinate I have to co-ordinate toas, RV végendatas	nety Eight Thousa er is inclusive of a f above in Purchas is mentioned in Pu the standard. in triplicate. with our represent	II taxes. te Order for each iten rehase Order. tative at site during the	ety Four a.			he world				Ord	Rooad off Total Value	9.3
nount in rems & G Total va Delivery Delivery TDS will Invoice s You will Myson PA Post, Ben Kanataka	Portensional Words:- Rupees Nit Conditions: alue of Purchase Ordi y Date: As mentioned Place: As per detail II be deducted as per should be submitted i I have to co-ordinate I have to co-ordinate toas, RV végendatas	er is inclusive of a fabove of morchas is mentioned in Purchas in triplicate. with our represent 000 - 07170020/81	II taxes. te Order for each iten rechase Order. tusive at site during ti principationenen recapitationenen recapitationenen	nety Four n. ne execution an halo GO,	cha	nge t						Rooad off Total Value	91.29 Page 1

management, ground realistic support from teaching team and sincere efforts of the students in incorporating the change (habits) and instructions, the college could effectively declare the reduction in Carbon footprint and optimize the waste reductions.

We are not in a position to compute the carbon foot print at this point of time as the basic information from each of the students is yet to be collected; however, we will discuss the Carbon Foot print in the follow up compliance report.

THOUGHT FOR EVERY MOMENT

Wishing the team, a great success we deeply express our gratitude and heartfelt "THANKYOU" for allowing us to assess the energy flow scenario there by the ENERGY STATUS.

We acknowledge the involvement of HODs & Coordinator

Dr K N Subramanya Col Ishwar Doddamani Sunil Murthy

Principal Deputy Director-Administration Civil Engineer – RV Campus.

THOUGHT FOR EVERY MOMENT

Criteria 7.1.6

ENERGY AUDIT COMPLETION CERTIFICATE

I, Mallikarjun A Kambalyal, endorse and confirm that the Energy Audit has been carried out on 29th Oct 2021 under the instructions of Principal, Dr K N Subramanya for R V College of Engineering, Bengaluru. This report is generated based on the site visits and evidence collected from the site.

All attempts have been made to evaluate the scope for development and inculcate green practices in the campus and extended throughout the campus. The focus is also laid to make positive impact on the society for a better living.

I also confirm and sign this certificate, in case the institution needs demonstration, my team of professionals shall be happy to do so.

We present this report to much more than the legal or mandatory compliances. This report is tabled in two parts. The first forms the core discussions which are general in nature. The second section is subject specific under the statutory requirements of the NAAC accreditation norms. They are Audit reports on, Green aspects, Energy aspects, Environment aspects, Health aspects and the discussions on net CARBON FOOTPRINT & the CARBON HANDPRINT initiatives.

Any modifications, changes, omissions after the site visit shall be exclusive.

Authorised Auditor. Mallikarjun A. Kambalyal _{B.E (E&C)} Certified Energy Auditors EA-3485& ISO 50001:2011 & ISO14001:2015 Lead Auditor.

THOUGHT FOR EVERY MOMENT

BUREAU OF ENERGY EFFICIENCY

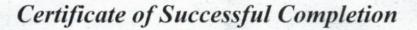
Examination Registration No. : EA-3485 Serial Number. 2838 Certificate Registration No. : 2838

Certificate For Certified Energy Manager

This is to certify that Mr./Mrs./Ms. Mallikarjun A Kambalyal Son/Daughter of Mr./Mrs. Andanappa V Kambalyal who has passed the National Examination for certification of energy manager held in the month of April 2006 is qualified as certified energy manager subject to the provisions of Bureau of Energy Efficiency (Certification Procedures for Energy Managers) Regulations, 2010.

This certificate shall be valid for five years with effect from the date of award of this certificate and shall be renewable subject to attending the prescribed refresher training course once in every five years.

His /Her name has been entered in the Register of certified energy manager at Serial Number .2838 being maintained by the Bureau of Energy Efficiency under the aforesaid regulations.


Mr./Mrs./Ms. Mallikarjun A Kambalyal is deemed to have qualified for appointment or designation as energy manager under clause (*1*) of Section 14 of the Energy Conservation Act, 2001 (Act No.52 of 2001).

Secretary Bureau of Energy Efficiency New Delhi

Dates of attending the refresher course	Secretary's Signature	Dates of attending the refresher course	Secretary's Signature		
28.01.2020	Ole-				

Figure 3 - Bureau of energy Efficiency Regd No: EA3485

THOUGHT FOR EVERY MOMENT

This is to Certify that

MALLIKARJUN A KAMBALYAL

has successfully completed the

Intertek

CQI & IRCA Certified ISO 14001:2015 Auditor Conversion Training Course

The Course includes the assessment and evaluation of Environmental Management Systems to conform to the requirements of ISO 14001:2015 and ISO 19011:2011

This course is certified by the Chartered Quality Institute (CQI) and the International Register of Certificated Auditors (IRCA) – IRCA REFERENCE 18093 –

The course meets the training requirements for individuals seeking certification under the IRCA Auditor Certification Schemes

Authorising Signature: Vysta Stennova

Course Dates: 14^h – 16th July 2017 Membership Application To Be Made Within 3 Years From Last Day of Course

121807

Figure 4- ISO Certified Lead Auditor. Certificate No: 47730

THOUGHT FOR EVERY MOMENT

Figure 5- ISO Certified Lead Auditor. Certificate No: ENR-00253448

THOUGHT FOR EVERY MOMENT

There are about 19,00,00,000 students in INDIA. If every student saves one sheet per day, 19,00,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

SUNSHUBH TECHNOVATIONS PVT LTD.,

Figure 6 - Manager training programme, Germany

THOUGHT FOR EVERY MOMENT

Programme raining R ω 0 പ ർ

Federal Ministry of Economics and Technology **giz** Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Certificate Fit for Partnership with Germany

Mr Mallikarjun Kambalyal

has successfully participated in the

Manager Training Programme of the Federal Ministry of Economics and Technology with India

from September 2 to September 28, 2013 in Germany.

The programme was carried out by the $\ensuremath{\mathsf{T}\ddot{\mathsf{U}}\mathsf{V}}$ Rheinland Akademie, Cologne.

The Manager Training Programme is funded by the Federal Ministry of Economics and Technology of the Federal Republic of Germany. GIZ is the general manager and coordinator of the programme.

Bonn, September 2013

Recu 1 Reimut Düring Christina Otto mmer

Head of Manager Training Programmer GIZ – Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH

Senior Project Manager GIZ – Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH

Figure 7 - Fit for partnership with Germany

THOUGHT FOR EVERY MOMENT

ONGOING STATUS:

It's an optimistic & highly dedicated team effort lead by the Principal & the senior staff who have dedicated all their wits & free time to initiate Green Carpet the entire college premises. It is also a fact that there do exist few short comings which however is unintentional & on being trained & educated the campus should look for continued minimized waste generation. With all due appreciation to the management, staff involved & cooperation by the students, we have made few suggestions which on implementation, will reduce, demand for water & electrical power. It will also reduce the existing level of pollution to bear minimum.

NO WASTE – NO POLLUTION – NO HEALTH HAZARD.

WHY IS THIS AUDIT BEING CARRIED OUT?

Whether you own or manage a small business, a large commercial facility, or a manufacturing operation, it's important to take advantage of any tips, programs and incentives that will help you save money on your energy bills. There are measures that will generate savings to positively impact your bottom line immediately, as well as longer-term strategic initiatives to assess your needs and stabilize your energy spend in the longer term – which is great news for your budget!

One such initiative is an energy audit. Energy audits reveal your usage patterns, identify waste, over-expenditure and, generally, make you fully cognizant of where your energy dollars are going. This knowledge will enable you to be more efficient with your energy use and be able to track and accelerate savings. Energy Audits may sound expensive or complicated, but they can be free and are easier than you think.

WHAT IS AN ENERGY AUDIT?

An energy audit is an analysis of a facility, indicating how and where that facility can reduce energy consumption and save energy costs. Its insight to energy efficiency and conservation can lead to significant savings on the company's utility bill.

THOUGHT FOR EVERY MOMENT

There are about 19,00,00,000 students in INDIA. If every student saves one sheet per day, 19,00,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

WHY SHOULD YOU GET AN ENERGY AUDIT?

Energy costs are soaring and your business can be at considerable risk if you do not take the guesswork out of your energy usage and the budget you need to cover it. Energy audits identify where your business is wasting energy. Residential and commercial properties account for around 10% of carbon emissions in the US, according to the EPA, which means they are very inefficient and waste huge amounts of energy and... revenue. An energy audit helps by revealing just how and where energy is being wasted. With thousands of commercial energy customers nationwide, we are well-qualified to advise you on which methods are best used for reducing energy waste and overall energy consumption. Let's start with a simple free evaluation of your bills and show you how we have been found to save between 5% and 35% for many of our customers.

In the case of energy, less is more. Lower energy consumption equals lower energy costs. And, of course, less energy consumption is obviously good for the environment.

As you can see, to be truly effective, energy management requires a strategy just like the other aspect of your operation and measures to curb costs can be simple and in some cases free. Gaining more control over your energy costs will improve the general health of your budget. Not only that but reducing your CARBON FOOTPRINT is great for the environment too!

THOUGHT FOR EVERY MOMENT

ENERGY AUDIT OBJECTIVES

Energy Audit was initiated in the beginning of 1970's, with the motive of inspecting the work executed within an organization, whose exercises could cause risk to the health of inhabitants and the environment. It exposes the genuineness of the proclamation made by the organisation with the concern on health issues. As a consequence of their operations with respect to environmental pollution it is the duty of the organisation to carry out the Energy Audit of the ongoing processes for various reasons, such as,

- To make sure whether one is performing in accordance with the relevant rules and regulations,
- To improve the procedures and aptness of material in use,
- To analyse the potential duties and to determine a way which can lower the cost and to the revenue.

Through Energy Audit one gets adoration as to how to improve the condition of the environment. There are various factors that were forced upon and determine the growth of/or conduct of Energy Audit. Incidents like,

- Decades old Bhopal gas tragedy, that has left its residual effect which still haunts us.
- Our buildings catching fire due to various reasons,
- Industries blowing off taking valuable human lives etc
- People going sick, feeling tired, after long hours of operations in the organization,
- Increased demand of generators due to inconsistent power supply, which has resulted or lead into recent floods and droughts,

are some of the situations to ponder about!

To address various issues in context with human health, Energy Audit is assigned to "Criteria 7" of NAAC (National assessment and accreditation council) accreditation. NAAC is a self-governing organization in India that declares the institutions as Grade "A++", "A+", "A", Grade "B", according to the scores assigned at the time of accreditation.

The other intention of organising Energy Audit is to update the environment conditions in and around the institutions i.e., within the compound and outside the

There are about 19,00,00,000 students in INDIA. If every student saves one sheet per day, 19,00,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

compound. It is carried out with the aid of performing certain tasks like waste management, energy consumed, diesel burnt it performing the objective of the organization. Lastly to self-assess the net carbon footprint of the conduct of process in the organization.

THE GOALS OF ENERGY AUDIT

- The purpose of carrying out Energy Audit is securing the environment and cut down the threat posed to human health.
- To Make sure that rules and regulations are complied with.
- To avoid the environmental interruptions that are more difficult to handle and their corrections call for high cost.
- To suggest the best protocol for adding to sustainable development.
- To execute the process of the organisation utilising minimum natural resources and efficient use of those resources contributing to minimum waste generation.

How is the Energy Audit conducted?

- Pre-audit
- Planning
- Selecting the team of auditors both internal and external
- Schedule the audit facility
- Acquire the background information
- Visit areas under audit

THOUGHT FOR EVERY MOMENT

UNDERSTAND THE SCOPE OF AUDIT

- Analyse the strengths and weaknesses of the internal controls
- Conduct audit with end user comfort focused and making it easy to perform.
- Collect necessary evidence so that the stakeholders stand to understand how and where they are going wrong in the process of their conduct.
- Post audit draw the report based on the data collected.
- On confirmation of the preliminary report, draw a final report of the observations and inference with accuracy more near to implementable way.
- Discuss various remedial measures for alternatives if required.
- Prepare an action plan to overcome the shortcomings with continual observation on the action plan initiated.

Steps under Energy Audit

- Water is one of the cheapest commodities next to the Air we breathe. Although we Indians, use less water in comparison to western countries. However, the extent of pollutants that we leave behind has polluted all the resources including the deep well.
- Rainwater harvesting is one of the best techniques that can be adopted by harvesting the rainwater and using it at the time of scarcity. the audit team to observe and investigate the relevant methods that can be adopted and implemented and draw the balance of use of water.
- The point of generation of waste, the type of waste generated, i.e., hazardous, recyclable and organically compostable wastes and segregating method at the point of generation for easy and best way to handle the same. Evaluating such methods to minimise the use of resources in the process of their management.
- It deals with use of energy in the conduct of the process. The priority is topmost for conservation over efficiency; hence, energy auditor should always consider not to use the energy if necessary. At best it can be used judiciously.
- It analyses air quality, noise level and the programs undertaken by the institution for plantation creating awareness of trees around us and how nature provides us with remedial measures within its framework.

THOUGHT FOR EVERY MOMENT

- In the process of use of resources and conduct of the activities, they can develop impact on human health, that might be off minutely harmful, cause permanent disorder or may even cause death. Occupational health hazards are discussed in detail and the stakeholders are informed of the same and required necessary remedial measures indicated.
- To make in organisation net zero net zero carbon emission use of renewable resources including energy such as solar wind biogas geothermal energies are put into ooh utilisation.
- The net impact All the above energy audits should be to make an organisation contribute zero emissions which are called by bhai use of water generation of waste use of energy e environmental damage health damage and finally to explore if the campus or direction can go in in contributing to third-party emissions minimising
- To draw home the benefits, the system has been separated out into various audits as listed above. In doing so, and if audit findings are effectively implemented there are many advantages that can be practised in the process
- Recognise the cost saving methods through waste minimising and managing technologies.
- Point out the prevailing and forth coming complications.
- Authenticate conformity with the legal requirements.
- Empower the organisation to frame a better environmental performance.
- Portray a good image of the institution which helps build better relationships with the group's organisations, stakeholders in and around its operations
- Enhance the alertness for environmental guidelines duties and conduct of preparedness for any eventualities due to environmental disasters proposed)
- Indicative templet for display at all prominent areas, classrooms, waiting rooms, canteen, library, relaxing areas in the campus.

THOUGHT FOR EVERY MOMENT

FACTORS CONSIDERED

Source : https://en.wikipedia.org/wiki/Bangalore

GEOGRAPHY

Main article: Bangalore geography and environment

The <u>Hesaraghatta Lake</u> in Bangalore

Bangalore lies in the southeast of the <u>South Indian</u> state of Karnataka. It is in the heart of the <u>Mysore Plateau</u> (a region of the larger <u>Precambrian Deccan Plateau</u>) at an average elevation of 900 m (2,953 ft).^{[63]:8} It is located at 12.97°N 77.56°E and covers an area of 741 km² (286 sq mi).^[64] The majority of the city of Bangalore lies in the <u>Bangalore Urban district</u> of Karnataka and the surrounding rural areas are a part of the <u>Bangalore Rural district</u>. The Government of Karnataka has carved out the new district of <u>Ramanagara</u> from the old Bangalore Rural district.^[65]

The topology of Bangalore is generally flat, though the western parts of the city are hilly. The highest point is <u>Vidyaranyapura Doddabettahalli</u>, which is 962 metres (3,156 feet) and is situated to the north-west of the city.^[66] No major rivers run through the city, although the <u>Arkavathi</u> and <u>South Pennar</u> cross paths at the <u>Nandi Hills</u>, 60 kilometres (37 miles) to the north. <u>River Vrishabhavathi</u>, a minor tributary of the Arkavathi and Vrishabhavathi together carry much of Bangalore's <u>sewage</u>. A <u>sewerage</u> system, constructed in 1922, covers 215 km² (83 sq mi) of the city and connects with five <u>sewage treatment</u> centres located in the periphery of Bangalore.^[67]

In the 16th century, Kempe Gowda I constructed many lakes to meet the town's water requirements. The Kempambudhi Kere, since overrun by modern development, was prominent among those lakes. In the earlier half of 20th century, the Nandi Hills <u>waterworks</u> was commissioned by <u>Sir Mirza Ismail</u> (<u>Diwan</u> of Mysore, 1926–41 CE) to provide a water supply to the city. The river <u>Kaveri</u> provides around 80% of the total water supply to the city with the remaining 20% being obtained from the Thippagondanahalli and Hesaraghatta reservoirs of the Arkavathi

THOUGHT FOR EVERY MOMENT

river.^[68] Bangalore receives 800 million litres (211 million <u>US gallons</u>) of water a day, more than any other Indian city.^[69] However, Bangalore sometimes does face water shortages, especially during summer- more so in the years of low rainfall. A <u>random sampling</u> study of the <u>air quality index</u> (AQI) of twenty stations within the city indicated scores that ranged from 76 to 314, suggesting heavy to severe air pollution around areas of traffic concentration.^[70]

Bangalore has a handful of freshwater lakes and <u>water tanks</u>, the largest of which are Madivala tank, <u>Hebbal</u> lake, <u>Ulsoor</u> lake, Yediyur Lake and <u>Sankey Tank</u>. Groundwater occurs in <u>silty</u> to <u>sandy</u> layers of the <u>alluvial</u> sediments. The <u>Peninsular</u> <u>Gneissic</u> Complex (PGC) is the most dominant rock unit in the area and includes <u>granites</u>, <u>gneisses</u> and <u>migmatites</u>, while the soils of Bangalore consist of red <u>laterite</u> and red, fine <u>loamy</u> to <u>clayey</u> soils.^[70]

Vegetation in the city is primarily in the form of large <u>deciduous</u> <u>canopy</u> and minority <u>coconut</u> trees. Though Bangalore has been classified as a part of the seismic zone II (a stable zone), it has experienced quakes of magnitude as high as 4.5.^[71]

Climate

Bangalore has a <u>tropical savanna climate</u> (Köppen climate classification Aw) with distinct wet and dry seasons. Due to its high elevation, Bangalore usually enjoys a more moderate climate throughout the year, although occasional heat waves can make summer somewhat uncomfortable.^[72] The coolest month is January with an average low temperature of 15.1 °C (59.2 °F) and the hottest month is April with an average high temperature of 35 °C (95 °F).^[73] The highest temperature ever recorded in Bangalore is 39.2 °C (103 °F) (recorded on 24 April 2016) as there was a strong El Niño in 2016.^[74] There were also unofficial records of 41 °C (106 °F) on that day. The lowest ever recorded is 7.8 °C (46 °F) in January 1884.^{[75][76]} Winter temperatures rarely drop below 14 °C (57 °F), and summer temperatures seldom exceed 36 °C (97 °F). Bangalore receives rainfall from both the northeast and the southwest monsoons and the wettest months are September, October and August, in that order.^[73] The summer heat is moderated by fairly frequent thunderstorms, which occasionally cause power outages and local flooding. Most of the rainfall occurs during late afternoon/evening or night and rain before noon is infrequent.

THOUGHT FOR EVERY MOMENT

November 2015 (290.4 mm) was recorded as one of the wettest months in Bangalore with heavy rains causing severe flooding in some areas, and closure of a number of organisations for over a couple of days.^[77] The heaviest rainfall recorded in a 24-hour period is 179 millimetres (7 in) recorded on 1 October 1997.^[78]

Climate data for Bangalore (1981–2010, extremes 1901–2012)													
Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Record high °C (°F)	32.8 (91.0)	35.9 (96.6)	37.3 (99.1)	38.3 (100.9)	38.9 (102.0)	38.1 (100.6)	33.3 (91.9)	33.3 (91.9)	33.3 (91.9)	32.4 (90.3)	31.7 (89.1)	31.1 (88.0)	38.9 (102.0)
Average high °C (°F)	27.9 (82.2)	30.7 (87.3)	33.1 (91.6)	34.0 (93.2)	33.3 (91.9)	29.6 (85.3)	28.3 (82.9)	27.8 (82.0)	28.6 (83.5)	28.2 (82.8)	27.2 (81.0)	26.5 (79.7)	29.6 (85.3)
Average low °C (°F)	15.8 (60.4)	17.5 (63.5)	20.0 (68.0)	22.0 (71.6)	21.7 (71.1)	20.4 (68.7)	19.9 (67.8)	19.8 (67.6)	19.8 (67.6)	19.6 (67.3)	18.0 (64.4)	16.2 (61.2)	19.2 (66.6)
Record low °C (°F)	7.8 (46.0)	9.4 (48.9)	11.1 (52.0)	14.4 (57.9)	16.7 (62.1)	16.7 (62.1)	16.1 (61.0)	14.4 (57.9)	15.0 (59.0)	13.2 (55.8)	9.6 (49.3)	8.9 (48.0)	7.8 (46.0)
Average rainfall mm (inches)	1.9 (0.07)	5.4 (0.21)	18.5 (0.73)	41.5 (1.63)	107.4 (4.23)	106.5 (4.19)	112.9 (4.44)	147.0 (5.79)	212.8 (8.38)	168.3 (6.63)	48.9 (1.93)	15.7 (0.62)	986.9 (38.85)
Average rainy days	0.2	0.4	1.1	3.1	6.7	6.2	7.2	9.9	9.8	8.3	3.8	1.4	58.1
Average <u>relative</u> <u>humidity</u> (%) (at 17:30 <u>IST</u>)	41	32	29	35	47	62	65	67	64	65	61	53	52
Mean monthly <u>sunshin</u> <u>e hours</u>	262.3	247.6	271.4	257.0	241.1	136.8	111.8	114.3	143.6	173.1	190.2	211.7	2,360. 9
Source 1: India Meteorological Department ^{[79][80]}													
Source 2: <u>NOAA</u> (sun: 1971–1990) ^[81]													

Pollution control

Bangalore generates about 3,000 tonnes of <u>solid waste</u> per day, of which about 1,139 tonnes are collected and sent to <u>composting</u> units such as the Karnataka Composting Development Corporation. The remaining solid waste collected by the municipality is dumped in open spaces or on roadsides outside the city.^[134] In 2008,

THOUGHT FOR EVERY MOMENT

There are about 19,00,000 students in INDIA. If every student saves one sheet per day, 19,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

Bangalore produced around 2,500 <u>metric tonnes</u> of <u>solid waste</u>, and increased to 5000 <u>metric tonnes</u> in 2012, which is transported from collection units located near <u>Hesaraghatta Lake</u>, to the garbage dumping sites.^[135] The city suffers significantly with dust pollution, hazardous waste disposal, and disorganised, unscientific waste retrievals.^[136] The IT hub, Whitefield region is the most polluted area in Bangalore.^[137] Recently a study found that over 36% of diesel vehicles in the city exceed the national limit for emissions.^[138]

Anil Kumar, Commissioner Bruhat Bengaluru Mahanagara Palike BBMP, said: "The deteriorating Air Quality in cities and its impact on public health is an area of growing concern for city authorities. While much is already being done about collecting and monitoring air quality data, little focus has been given on managing the impacts that bad air quality is having on the health of citizens."[139]

Waste management

In 2012 Bangalore generated 2.1 million tonnes of <u>Municipal Solid</u> <u>Waste</u> (195.4 kg/cap/yr).^[143] The waste management scenario in the state of Karnataka is regulated by the Karnataka State Pollution Control Board (KSPCB) under the aegis of the Central Pollution Control Board (CPCB) which is a Central Government entity. As part of their Waste Management Guidelines the government of Karnataka through the Karnataka State Pollution Control Board (KSPCB) has authorised a few well-established companies to manage the <u>biomedical waste</u> and hazardous waste in the state of Karnataka. <u>[citation needed]</u>

Economy:

Recent estimates of the economy of Bangalore's metropolitan area have ranged from \$45 to \$83 billion (<u>PPP GDP</u>), and have ranked it either <u>fourth- or fifth-most</u> <u>productive metro area</u> of India.^[10] In 2014, Bangalore contributed US\$45 billion, or 38 per cent of India's total IT exports.^[144] As of 2017, IT firms in Bengaluru employ about 1.5 million employees in the IT and IT-enabled services sectors, out of nearly 4.36 million employees across India.^[145]

With an economic growth of 10.3%, Bangalore is the second fastest-growing major metropolis in India,^[146] and is also the country's fourth largest <u>fast-moving consumer</u>

THOUGHT FOR EVERY MOMENT

There are about 19,00,00,000 students in INDIA. If every student saves one sheet per day, 19,00,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

<u>goods</u> (FMCG) market.^[147] Forbes considers Bangalore one of "The Next Decade's Fastest-Growing Cities".^[148] The city is the third largest hub for <u>high-net-worth</u> <u>individuals</u> and is home to over 10,000-dollar millionaires and about 60,000 super-rich people who have an investment surplus of ₹45 million (US\$630,900) and ₹5 million (US\$70,100) respectively.^[149]

The headquarters of several <u>public sector undertakings</u> such as <u>Bharat Electronics</u> <u>Limited</u> (BEL), <u>Hindustan Aeronautics Limited</u> (HAL), <u>National Aerospace</u> <u>Laboratories</u> (NAL), <u>Bharat Earth Movers Limited</u> (BEML), Central Manufacturing Technology Institute (CMTI) and <u>HMT</u> (formerly Hindustan Machine Tools) are located in Bangalore. In June 1972 the <u>Indian Space Research Organisation</u> (ISRO) was established under the Department of Space and headquartered in the city. Bangalore also houses several research and development centres for many firms such as <u>ABB</u>, <u>Airbus</u>, <u>Bosch</u>, <u>Boeing</u>, <u>General Electric</u>, <u>General</u> <u>Motors</u>, <u>Google</u>, <u>Liebherr-Aerospace</u>, <u>Microsoft</u>, <u>Mercedes-</u>

<u>Benz, Nokia, Oracle, Philips, Shell, Toyota and Tyco.</u>

Bangalore is called as the Silicon Valley of India because of the large number of information technology companies located in the city which contributed 33% of India's ₹1,442 billion (US\$20 billion) IT exports in 2006–07.^[150] Bangalore's IT industry is divided into three main <u>clusters</u> – <u>Software Technology Parks of</u> <u>India</u> (STPI); <u>International Tech Park, Bangalore</u> (ITPB); and <u>Electronics City</u>. UB City, the headquarters of the <u>United Breweries Group</u>, is a high-end commercial zone.^[151] <u>Infosys</u> and <u>Wipro</u>, India's third and fourth largest software companies are headquartered in Bangalore, as are many of the global *SEI-CMM Level 5 Companies*.

The growth of IT has presented the city with unique challenges. Ideological clashes sometimes occur between the city's IT moguls, who demand an improvement in the city's infrastructure, and the state government, whose electoral base is primarily the people in rural Karnataka. The encouragement of high-tech industry in Bangalore, for example, has not favoured local employment development, but has instead increased land values and forced out small enterprise.^[152] The state has also resisted the massive investments required to reverse the rapid decline in city transport which has already begun to drive new and expanding businesses to other centres across

THOUGHT FOR EVERY MOMENT

India. Bangalore is a hub for <u>biotechnology</u> related industry in India and in the year 2005, around 47% of the 265 biotechnology companies in India were located here; including <u>Biocon</u>, India's largest biotechnology company.^{[153][154]}

CULTURE

Main article: <u>Culture of Bengaluru</u>

<u>Bangalore Karaga</u>, one of the oldest and most important festivals in Bangalore <u>Yakshagana</u> – a theatre art of coastal Karnataka is often played in town hall Bangalore is known as the "Garden City of India" because of its greenery, broad streets and the presence of many public parks, such as <u>Lal Bagh</u> and <u>Cubbon</u> <u>Park</u>.^[172] Bangalore is sometimes called as the "<u>Pub</u> Capital of India" and the "Rock/Metal Capital of India" because of its underground music scene and it is one of the premier places to hold international rock concerts.^[173] In May 2012, <u>Lonely</u> <u>Planet</u> ranked Bangalore third among the world's top ten cities to visit.^[174]

Bangalore is also home to many <u>vegan</u>-friendly restaurants and vegan activism groups, and has been named as India's most vegan-friendly city by <u>PETA</u> India.[175][176]

Biannual flower shows are held at the Lal Bagh Gardens during the week of Republic Day (26 January) and Independence Day (15 August). Bengaluru Karaga or "Karaga Shaktyotsava" is one of the most important and oldest festivals of Bangalore dedicated to the Hindu Goddess Draupadi. It is celebrated annually by the Thigala community, over a period of nine days in the month of March or April. The Someshwara Car festival is an annual procession of the idol of the Halasuru Someshwara Temple (Ulsoor) led by the Vokkaligas, a major land holding community in the southern Karnataka, occurring in April. Karnataka Rajyotsava is widely celebrated on 1 November and is a public holiday in the city, to mark the formation of Karnataka state on 1 November 1956. Other popular festivals in Bangalore are Ugadi, Ram Navami, Eid ul-Fitr, Ganesh Chaturthi, St. Mary's feast, Dasara, Deepawali and Christmas.^{[177][178]}

The diversity of cuisine is reflective of the social and economic diversity of Bangalore.^[179] Bangalore has a wide and varied mix of restaurant types and cuisines and Bangaloreans deem eating out as an intrinsic part of their culture. Roadside vendors, <u>tea stalls</u>, and South Indian, North Indian, <u>Chinese</u> and Western fast food are

THOUGHT FOR EVERY MOMENT

There are about 19,00,00,000 students in INDIA. If every student saves one sheet per day, 19,00,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

all very popular in the city.^[180] <u>Udupi</u> restaurants are very popular and serve predominantly vegetarian, regional cuisine.^[181]

Education:

Universities

National Law School of India University, a premier law university

The <u>Central College of Bangalore</u> is the oldest college in the city, it was established in the year 1858. It was originally affiliated to <u>University of Mysore</u> and subsequently to <u>Bangalore University</u>. Later in the year 1882 the priests from the <u>Paris Foreign</u> <u>Missions Society</u> established the <u>St Joseph's College</u>, <u>Bangalore</u>. The <u>Bangalore</u> <u>University</u> was established in 1886, it provides affiliation to over 500 colleges, with a total student enrolment exceeding 300,000. The university has two campuses within Bangalore – Jnanabharathi and Central College.^[211] <u>University Visvesvaraya College</u> <u>of Engineering</u> was established in the year 1917, by <u>Sir M. Visvesvaraya</u>, At present, the UVCE is the only engineering college under the <u>Bangalore University</u>. Bangalore also has many private engineering colleges affiliated to <u>Visvesvaraya Technological</u> <u>University</u>.

Some of the professional institutes in Bengaluru are:

- International Centre for Theoretical Sciences
- Indian Institute of Astrophysics
- Indian Institute of Science, which was established in 1909 in Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- National Centre for Biological Sciences (NCBS)
- National Institute of Mental Health and Neuro Sciences (NIMHANS)
- <u>Raman Research Institute</u>
- National Law School of India University (NLSIU)
- Indian Institute of Management, Bangalore (IIM-B)
- Indian Statistical Institute
- Institute of Finance and International Management (IFIM)
- Institute of Wood Science and Technology
- International Institute of Information Technology, Bangalore (IIIT-B)
- National Institute of Design (NID),

THOUGHT FOR EVERY MOMENT

- National Institute of Fashion Technology (NIFT),
- University of Agricultural Sciences, Bangalore (UASB)
- Bangalore Medical College and Research Institute (BMCRI)
- Sri Jayadeva Institute of Cardiovascular Sciences and Research (SJICR)

Some famous private institutions in Bangalore include <u>Symbiosis International</u> <u>University, SVKM's NMIMS, CMR University, Christ University, Jain University, PES</u> <u>University, Dayananda Sagar University</u> and <u>M. S. Ramaiah University of Applied</u> <u>Sciences</u>. Some famous private medical colleges include <u>St. John's Medical</u> <u>College</u> (SJMC), <u>M. S. Ramaiah Medical College(MSRMC)</u>, Kempegowda Institute of <u>Medical Sciences</u> (KIMS), <u>Vydehi Institute of Medical Sciences and Research</u> <u>Centre</u> (VIMS), etc.^{[212][213]} The <u>M. P. Birla Institute of Fundamental Research</u> has a branch located in Bangalore.^[214]

LIMITATIONS:

Our recommendations are in the interest of conservation of Electrical Energy and Green Culture i.e., the reduction in CARBON FOOTPRINT. The compliance to the recommendations will be subjected to meeting the safety and Environmental rules and guidelines.

THOUGHT FOR EVERY MOMENT

PART 2 - TECHNICAL

DISCUSSIONS ON EXECUTIVE SUMMARY:

POWER CONSUMPTION

Sr No	Observation*	Benefits/ Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
	Power	The power	demand	of the collec	ge should be	fixed and an	
1	Consum ption	energy meter should be placed and monitored on regular basis.					

The college has availed 600KVA electrical power from the grid. The Society has also

installed solar power for meeting inhouse demand. Some observations are,

- 1. The recorded MD is found to be 303KVA which indicates that the institute is under utilising the existing demand.
- 2. The replacement of the T5, T8 and T12 tubelights in the campus if replaced with LED luminaries, there will be further reduction of Power demand and reduction in energy use as well.
- It would be appropriate to define the fixed share of the Solar power and the grid power. During the audit and post audit, no official data/ information has been shared,

			Office	OM GS	TN No. 294 L Executive Eng	ACCB1	4120	31Z5		
RR Nu.	Act	count ID	6	III No.	Billing Po	riod	0.05	Date	Due Date	
0429068839 056HT259	942	9008000	9429	00813552	01-08-2021-0			9-2021		Disconnection Da
Namo & Address:			1.000				9100	Page 1	15-09-2021	01-10-2021
		Type			Educational In	shiters - H	1212	Wheeling	g Energy	0
CV_COLLEGE OF Tariff NOINCERING Contract DUCATIONAL 86% of C					1202		Figh Co	of Emergy		
		CD (KVA)	(VA)		510		Special I	Enligy		
INSTITUTIONPUT		Record	od Demana	(KVA)		103		Power C	recompliant	
HUTPHOLENEL, KARE -		Blang	Nemand (KV	mand (KVA)		110		Energy E Demand Entitional	Distances (1997)	
Trees the strengt for Marrier \$2								Entitionis		
	-	-	Rubble Matter	NT overlag						
Provid Pearing 11-04	nge (141	100					
Pre-local Pagetry 11-25	12	1/26.34								
Televis Televise		34.95		100						
			700	-						
		riant.								
					1.82					
100 meter madiogen	or mater -	Charles and								
Time Zone	Nor	no of the	Pre	sent	Providua	Consum		MD Read		
00.00 ms to 10.03		Zone		denga	Readings	C OF HELDEN	1000	MLJ Head	ing	
ifes	More	sing Peak			770.0-					
10.00 Hes to 18:00 Nes	N	iormai				100				
18.00 Hes to 22.00	i i i	Peak	-							
72:00 Hirs to 06:00			-			11700				
P#6	0	ff Peak	Lugar."	-	400,000					
Details for NEFTARTO	3	1000	1 6003	110000	Voir	Detailed Bill	-			
This Bill Payment Or Seneficiary Name BE	SCOM		- Come					-		Amount (Re.)
Account Number 942 lank Name Bank of	0058000		Erbergy	Charges Firs	0.00 KVA III //KJ 40 4 99 550 00 KVA III	00 per kula Rolt 20 per kul	81			122 400 00 #18 770 00
based Cantonnet			Post Ca	on Heserous	1 99 500 00 k Mh at 1 Charges 90 100 o	KWH MILES	50 gen	KNN		-49.905.90
SC BKIDODESCOM			Witerest Tax	on Law						
SC BKIDOOBSCOM			Curront	Gill Amount						73649-30 964934-58
SC BRIDOOBSCOM			Arrears thill Con	rection						1809783.00
SC BKIDOOBSCOM			Britchin	iling adjustme abio Amount	104					1999230 de
SC BKIDOOBSCOM							harris in	ow Last Last.	of the Droma of	915458.00 Parentes at Pilly Plager Overy
SC BKIDOOBSCOM			nut Pays							Contraction and a state of the state
SC BKIDOOBSCOM			nutray							
SC BKIDOOBSCOM			nut Pap				Sel-			
SC BKIDOOBSCOM			nut Pay		Ass	istant Execu	Sd/- tive E	ngistoor (E		
SC BKIDOOBSCOM			nut Pap			istant Exect	Sd/-	nginoor (E	ia.)	
SC BKIDOOBSCOM	0		and Page		Arr	istant Exect	Sid/-	nghioor (F	10.) (EL)	
SC BKIDOOBSCOM	2		nd Pap	,	Ass	t Sub Di	Sd/ two Ei	nghioor (F ngineer n, BESCI	ia.) (EL) OM	
SC BKIDOOBSCOM	2		nd Pap	/	Ass	t Sub Di	Sd/ two Ei	nghioor (F ngineer n, BESCI	ia.) (EL) OM	
SC BKIDOOBSCOM	G	Runo		/	Ass	istant Exect	Sd/ two Ei	nghioor (F ngineer n, BESCI	ia.) (EL) OM	

we learn that the college has installed solar Power and is being used inhouse.

THOUGHT FOR EVERY MOMENT

4. There exist loose contacts in the 11KV substation and the system could blow out very soon considering the temperature at the point of Tapping at the pothead. The three points of contact are measured to be in the range of 163°C, 111°C and 270°C from a measured distance of 30 feet (approximate)

Figure 8 - Thermographic images of 11 kV substation

In actual situation the temperature would be atleast around 200°C, 150°C and 340°C respectively. This calls for immediate attention.

5. The electrical panel room should be used exclusively for housing the switchgear. Nothing other than the switchgear devices should be placed on or below the panel which may give catalytic effect in case of fire.

RENEWABLE ENERGY

Sr No	Observation*	Problems* Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7		
2	Solar Power		uggest to install Solar Power to minimise use of energy Auring Off grid times.					

Although the institute has installed solar power, the same is not connected to grid as seen from the Energy bill made available., The institute has good space to explore rooftop Solar power and export to grid during the non peak working hours.

THOUGHT FOR EVERY MOMENT

There are about 19,00,00,000 students in INDIA. If every student saves one sheet per day, 19,00,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

However, we understand and believe that the administration should look for technical consultancy to meet the Specific demand on

- 1. Maximum power.
- 2. Maximum energy usage during the active days
- Avoided use of grid for charging the batteries in the campus which account for 20% of the energy demand. And 10% of the peak power demand ie the Recorded Maximum demand.
- If the above three are addressed, the use of Diesel Gensets should be a feasible option, resulting savings from use of diesel, avoided NOISE & AIR pollution.

SENSOR TECHNOLOGY

Sr No	Observation*	Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
3	Occupa	Wastage	High	Occupancy	₹1500 per	Resulted ROI	
	ncy	of power 🧹		sensor	room	of one year.	710
	sensor			based			7.1.2
				switching			

It is also observed that the lights are left switched ON at majority of places during daylight, thus calling for wastage of electrical power, causing financial losses to the management and energy loss to the country.

It may also be noted that during the day hours with direct sunlight, the lights remain on. Hence it is important that the sensing system should take care of monitoring the LUMEN and the human presence in the hall to operate the lights.

THOUGHT FOR EVERY MOMENT

Figure 10 - Lighting need for sensor

Figure 9 - Need for occupancy sensor

Solution:

It is therefore required to install <u>Light Intensity Sensors</u> in all the rooms. Lighting improvements should be carried out by using LED or The Induction Light systems in lieu of normal tube lights. If the finance department permits, it is advised to install 40W Induction lamps in all classrooms.

Source : Can be locally procured, However the loadbased selection is key aspect in its installation. To set the visibility, the intensity of natural light is much stronger and hence LUX based setting doesn't work. Hence the technical supervision is key aspect.

We suggest to allocate this to the Electronics & Electrical stream students to understand the science and application of technology.

Need based light energy utilisation should be imparted to the children so as to take it forward to the society.

The other aspect to the light energy is the task based lighting.

Ie., Task – normal or critical. General lighting ie open area or living room lighting.

THOUGHT FOR EVERY MOMENT

External lighting ie yard lighting for security reasons.

We find use ofT5, T8 & T12 tube lights. It is wise to replace the same with LED tube lights on immediate basis. Considering the energy savings, the wait for their failure may not be justified.

Figure 11 - T5 & T8 tube lights with Electromagnetic choke

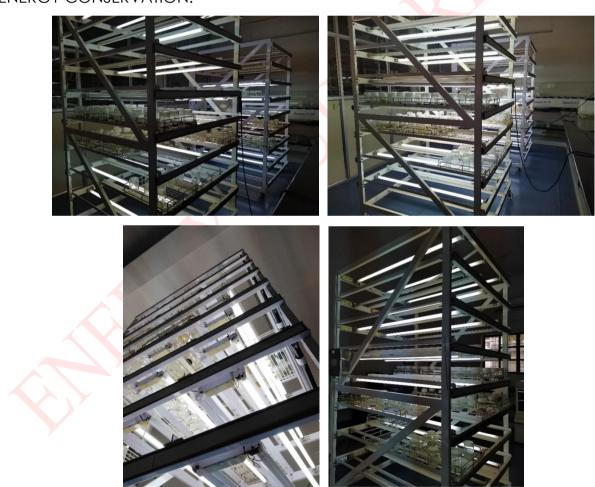


Figure 12 - Equipment load management

Let us understand the issues in the proprietary equipment. When the equipment is supplied, the supplier considers that the equipment would be put to full use at all

THOUGHT FOR EVERY MOMENT

There are about 19,00,000 students in INDIA. If every student saves one sheet per day, 19,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

ENERGY CONSERVATION:

times. Since we are discussing the application in a laboratory conditions, the samples put to test are very few and seldom full loading is done.

In the present situation, the samplings were randomly placed and in traces. On discussion with the staff incharge, we understand that they could be placed in one or two selves and the rest of the area be put off. IN doing so, the 18 T* &T!@ tube lights each consuming around 40 to 55Wats could be put off. Ie 850Watts of power could be saved and 20 Units of energy.

Considering the above evidence The staff can be educated on the use of equipment.

Awareness, leads to energy conservation. This is one such example. Similar applications could be observed in day-today practice. Thus the staff and students could be educated and trained in identifying such opportunities. This should help in minimsing the present load conditions and the reduced energy consumption as well.

THOUGHT FOR EVERY MOMENT

NATURAL LIGHTING

LIGHT INTENSITY SENSOR REQUIREMENT.

	Observation*	Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
	Electric	Old tube	High	LED lights of	Rs.80/-	Rs.175/- per	
	al	lights	energy	appropriate	to	tube per	
5			consum	ratings.	Rs.250/	annum. ROI	7.1.6
			ers		- per	of 1 years.	
					unit		
	Natural	Un	High	Clean the	Nil,	Substantial	
	Lighting	cleaned	energy	windowpan	part of	cost of	
		windows	bills	es and allow	routine	energy bills	
		and		maximum	, In	on lighting.	7.1.2,
6		ventilators		natural light	house		7.1.6
		, forced		penetration.	manp		
		switching			ower.		
		on of tube	1				
		lights					

It may be seen that the Light is illuminated. However, the brightness on the students

is seen to be coming from the sides. The shadow indicates natural light coming from the windows is brighter. Natural light is more predominant than the tube light. Hence tube light being switched off has no adverse effect. However, it would save on the energy consumption and contribute to green practices.

Figure 13 - Use of natural lighting where possible

NATURAL LIGHTING: Category 7.1.1, 7.1.2, 7.1.3 and 7.1.5

THOUGHT FOR EVERY MOMENT

We observe that the placement of the cupboards prevent natural lighting. The placement should be such that the use of electrical lighting is avoided. Also for normal and safe operation, the sourse of light rays should be coming from the sides and not from front.

It is also seen that the dark curtains prevent natural light and creates darkening effect. Selection or placement of such obstructions leads to use of electrical lighting causing heavy energy demand.

Figure 14 - Use of Light colored curtains and avoided blocades

Sr No	Observation*	Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
3	Battery place ment	Battery shell in conductor loop	Low performa nce & self- discharge	Design the stacking arrangemen ts.	In house re sources	25% of the cost of the batteries.	7.1.3

BATTERY MANAGEMENT.

Criteria 7.1.1, 7.1.2, 7.1.3 and 7.1.5

BATTERY PLACEMENT:

The batteries should be placed on an insulated platform not touching any of the metal frames with top clearance of 6". It may be known to all the stored energy users

THOUGHT FOR EVERY MOMENT

that, the batteries breath. The acidic fumes are breathed out and for ease of handling and breathing.

Provision for periodical checking and maintenance should be made possible without major obstacles.

The safe distance between two batteries placed on an insulated rubber mat or the wooden platform is important and very much necessary. Typical case of galvanic reaction shows self-discharging effect of the batteries.

In the below images, it is very evident that the Batery placement and handling has not been proper.

Figure 15 - Battery placement, Need cross ventilation.

THOUGHT FOR EVERY MOMENT

Figure 16 - Thickly populated & stacking in unventilated area

THOUGHT FOR EVERY MOMENT

Figure 18 - Galvanic reaction causing damage to battery life

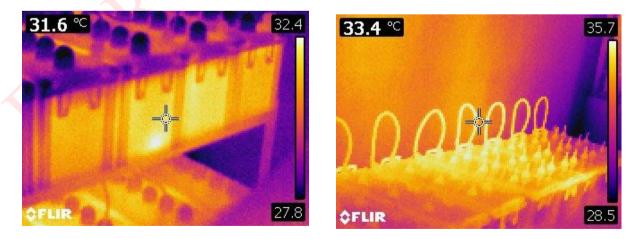


Figure 17 - Thermal inspection of the battery bank

THOUGHT FOR EVERY MOMENT

Thermal inspection shows the impact of self-discharging effect and heating effect on each of these batteries. The week batteries will eventually lose their working performance and soon the rest of the batteries would join the failure line.

In absence of the above placement conditions,

The batteries will discharge faster leading to Loss of energy.

The charging time and current will increase as there is the return path for selfdischarge leading to <u>Increased Energy Demand.</u>

A well-maintained battery is known to serve for more than 5-7 years.

The presence of corrosion marks at the point of contact as seen should be prevented over the time.

We strongly advice for regenerating the batteries once every 2 to 4 years so that they serve over 15 years in Liew of 3-5 years under present conditions.

A well-maintained battery will draw less charging power, i.e., saves on energy consumption, delivers more energy per charge thus resulting in better serviced life. Batteries should be placed well ventilated and avoid dumping of any material on the breathers provided.

For more information on battery regeneration, Contact

Sunshubh Technovations Pvt Ltd, Hubli <u>ceo@sunshubhrenewables.com</u>.

BATTERY REGENERATION

Battery regeneration is very popular. 80% of the batteries breaking down and losing capacity are sulphated, but can be restored with the right equipment. Battery regenerator successfully replaces sulphation by active material thanks to an electrical high-frequency pulsation process. This process restores the battery capacity, giving you the ability to reuse old and sulphated batteries. You can also use the battery regenerator for annual maintenance to considerably prolong the lifespan of your batteries. The battery regenerator can be used in every lead-acid-based battery: starter batteries, stationary batteries, traction & semi-traction batteries, Ni-Cad batteries ... Since the college uses BATTERIES in large numbers, the management can consider to procure one unit at the centralised station in the college campus.

THOUGHT FOR EVERY MOMENT

Sr No	Observation*	Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
4	Battery regene ration.	Short life span	300% of the cost of the battery.	Subject all batteries to regeneratio n made.	Rs.20.00 Lacs or as per user agreement	300 %	7.1.2, 7.1.6

NECESSITY AND ISSUES

It is customary in the present energy scenario to use Batteries either in our office or working environment. In continuation, The old week batteries are a nuisance as they need to be discarded in to the environment for further process. Which is a costly option both in terms of Health and pollution issues. Let us review our use of application and consider if we can improve our battery use methods. A brief note, before we consider to take corrective step.

Lead-acid batteries are widely used as important power supply devices that include automotive, uninterruptible power supply (UPS), telecommunication systems and various traction duties.

Lead-acid batteries are the workhorse of the rechargeable battery systems for its reliability, low cost, and good operational life. Predictably, approximately million tons waste batteries are generated every year and the production of lead-acid batteries will continue to rise even more sharply with sustained and rapid development of economy. The lead-acid battery is a complex industrial product, constituted by several different materials, the consequence was very serious which often caused much property loss, casualties and environment pollution once accidents happen Based on "Technical Guidelines for Environmental Risk Assessment on Projects" and in consideration of the characteristics of the chemical compositions and contents, a framework of environmental risk assessment framework on lead-acid batteries

THOUGHT FOR EVERY MOMENT

was established. The work procedure included risk identification, sources analysis, pollution forecast, and defensive measures. By analysing the environmental risk assessment of lead-acid batteries, the study opined for directions both for the preventive measures and safe use, according to the forecast results of leadacid batteries.

RISK IDENTIFICATION OF LEAD-ACID BATTERIES

Lead-acid batteries generally consist of four parts, which are electrolyte, lead and

lead alloy grid, lead paste, and organics and plastics, which included lots of toxic, hazardous, flammable, explosive substances that can easily create potential risk sources. The materials contained in lead-acid batteries may bring about lots of pollution accidents such as fires, explosions, poisoning and leaks, contaminating environment and damaging ecosystem. The main chemical compositions and contents of spent lead-acid batteries are listed below.

The main chemical compositions and contents of spent lead-acid batteries

Compositions	Contents (wt.%)
Electrolyte	11–30%
Lead and lead alloy	grid 24-30%
Lead paste	30–40%
Organics and plastic	cs 22-30%

The recognition & scope of lead-acid batteries, mainly focused on the pollutants involved in the process of centralized recovery, Storage areas and transport. Based on "Technical Guidelines for Environmental Risk Assessment on Projects" and" Identification of hazard installations for dangerous chemicals

THOUGHT FOR EVERY MOMENT

There are about 19,00,00,000 students in INDIA. If every student saves one sheet per day, 19,00,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

Environmental effects of lead can end up in water and soils through corrosion of leaded pipelines in a water transporting system and through corrosion of leaded paints. ... Lead accumulates in the bodies of water organisms soil and

With change in times, new solutions keep coming up. One such option is to Regenerate the dead or non-usable batteries. Energic Plus battery regenerator

successfully removes sulphating due to an electrical high-frequency pulsation process.

This process restores the battery capacity, giving you the ability to reuse old and sulphated batteries. You can also use the battery preconditioner for annual maintenance to strongly prolong the lifespan of your batteries.

Main Benefits are :

- Removes excessive sulphate
- Prolongs the lifespan of your battery
- Generates detailed reports in Word, Excel or PDF
- Fully automatic, easy to handle
- Free software included with wireless data transfer to computer
- Combination of charging/discharging

Works with all types of lead-acid-based batteries:

- Gel batteries,
- Traction(semi-) batteries,
- Starter batteries,
- Stationary Batteries.

Concealed batteries in operation or used batteries should be properly named and placed in proper order. The used batteries should be considered for REGENERATION for the second and subsequent cycles and prolong the disposal as the chemicals cause high level of damage to the environment.

We will discuss the regenerative system of used and week batteries to enhance the life. It is important to know few points on handling of batteries.

BU-703: Health Concerns with Batteries.

THOUGHT FOR EVERY MOMENT

Become familiar with the do's and don't's when handling batteries. Batteries are safe, but caution is necessary when touching damaged cells and when handling lead acid systems that have access to lead and sulfuric acid. Several countries label lead acid as hazardous material, and rightly so. Lead can be a health hazard if not properly handled.

LEAD

Lead is a toxic metal that can enter the body by inhalation of lead dust or ingestion when touching the mouth with lead-contaminated hands. If leaked onto the ground, acid and lead particles contaminate the soil and become airborne when dry. Children and foetuses of pregnant women are most vulnerable to lead exposure because their bodies are developing. Excessive levels of lead can affect a child's growth, cause brain damage, harm kidneys, impair hearing and induce behavioural problems. In adults, lead can cause memory loss and lower the ability to concentrate, as well as harm the reproductive system. Lead is also known to cause high blood pressure, nerve disorders, and muscle and joint pain. Researchers speculate that Ludwig van Beethoven became ill and died because of lead poisoning. By 2017, members of the International Lead Association (ILA) want to keep the lead blood level of workers in mining, smelting, refining and recycling below 30 micrograms per decilitre (30µg/dl). In 2014, the average participating employee checked in at 15.6µg/dl, but 4.8 percent were above 30µg/dl. (Source Batteries & Energy Storage Technology, Summer 2015.)

In 2019, the University of Southern California published the detection of lead in teeth of children living near the Exide Technologies battery recycling plant in Vernon, California.

Lead occurs naturally in soil at 15–40mg/kg level. This level can increase multi-fold near lead battery manufacturing and recycling plants. Soil levels in developing countries, including on the continent of Africa, recorded lead contamination levels of 40–140,000mg/kg.

THOUGHT FOR EVERY MOMENT

SULFURIC ACID

The sulfuric acid in a lead acid battery is highly corrosive and is more harmful than acids used in most other battery systems. Contact with eye can cause permanent blindness; swallowing damages internal organs that can lead to death. First aid treatment calls for flushing the skin for 10–15 minutes with large amounts of water to cool the affected tissue and to prevent secondary damage. Immediately remove contaminated clothing and thoroughly wash the underlying skin. Always wear protective equipment when handling sulfuric acid.

CADMIUM

Cadmium used in nickel-cadmium batteries is considered more harmful than lead if ingested. Workers at NiCd manufacturing plants in Japan have been experiencing health problems from prolonged exposure to the metal, and governments have banned disposal of nickel-cadmium batteries in landfills. The soft, whitish metal that occurs naturally in the soil can damage kidneys. Cadmium can be absorbed through the skin by touching a spilled battery. Since most NiCd batteries are sealed, there are no health risks in handling intact cells; caution is required when working with an open battery.

Nickel-metal-hydride is considered non-toxic and the only concern is the electrolyte. Although toxic to plants, nickel is not harmful to humans.

Lithium-ion is also benign — the battery contains little toxic material. Nevertheless, caution is required when working with a damaged battery. When handling a spilled battery, do not touch your mouth, nose or eyes. Wash your hands thoroughly.

Keep small batteries out of children's reach. Children younger than four are the most likely to swallow batteries, and the most common types that are ingested are button cells. Each year in the United States alone, more than 2,800 children are treated in emergency rooms for swallowing button batteries. According to a 2015 report, serious injuries and deaths from swallowing batteries have increased nine-fold in the last decade.

THOUGHT FOR EVERY MOMENT

The battery often gets stuck in the oesophagus (the tube that passes food). Water or saliva creates an electrical current that can trigger a chemical reaction producing hydroxide, a caustic ion that causes serious burns to the surrounding tissue. Doctors often misdiagnose the symptoms, which can reveal themselves as fever, vomiting, poor appetite and weariness. Batteries that make it through the oesophagus often move through the digestive tract with little or no lasting damage. The advice to a parent is to choose safe toys and to keep small batteries away from young children.

SAFETY TIPS

Keep button batteries out of sight and reach of children. Remote controls, singing greeting cards, watches, hearing aids, thermometers, toys and electric keys may contain these batteries.

Similar to pharmaceutical products, keep loose batteries locked away to prevent access by small children.

Communicate the danger of swallowing button batteries with your children, as well as caregivers, friends, family members and babysitters.

If you suspect your child has ingested a battery, go to the hospital immediately. Wait for a medical assessment before allowing the child to eat and drink.

VENTILATION

Charging batteries in living quarters should be safe, and this also applies to lead acid. Ventilate the area regularly as you would a kitchen when cooking. Lead acid produces some hydrogen gas but the amount is minimal when charged correctly. Hydrogen gas becomes explosive at a concentration of 4 percent. This would only be achieved if large lead acid batteries were charged in a sealed room.

Over-charging a lead acid battery can produce hydrogen sulphide. The gas is colourless, very poisonous, flammable and has the odour of rotten eggs. Hydrogen sulphide also occurs naturally during the breakdown of organic matter in swamps

THOUGHT FOR EVERY MOMENT

There are about 19,00,00,000 students in INDIA. If every student saves one sheet per day, 19,00,00,000 sheets of paper meaning 988 ton of paper will be saved every day. This is equivalent to saving 2748.54 ton of wood a day. This will lead to saving about 33,00,678 trees per year,

and sewers; it is present in volcanic gases, natural gas and some well waters. Being heavier than air, the gas accumulates at the bottom of poorly ventilated spaces. Although noticeable at first, the sense of smell deadens the sensation with time and potential victims may be unaware of its presence.

As a simple guideline, hydrogen sulphide becomes harmful to human life if the odour is noticeable. Turn off the charger, vent the facility and stay outside until the odour disappears. Other gases that can develop during charging and the operations of lead acid batteries are arsine (arsenic hydride, AsH₃) and (antimony hydride, SbH₃). Although the levels of these metal hydrides stay well below the occupational exposure limits, they are a reminder to provide adequate ventilation. Regeneration of week batteries for the second lease of life.

Sr No	Observation*	Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
7	Natural Ventilat ion	Permane ntly closed ventilators	Creation of hot air pockets below the ceiling.	Open the Ventilators for easy exit of hot/warm air from the rooms.	Nil, In house manp ower.	Eliminat es use of Electric al Fans and Substan tial cost of energy bills	7.1 .2, 7.1 .6

NATURAL VENTILATION.

THOUGHT FOR EVERY MOMENT

The natural ventilators are missing below the roofing. We also see that the roof is of Galvalume sheets. This makes the room hotter and more intolerable during the summer days. In absence of cross ventilation, the room turns out to be a oven. WE strongly suggest that the rooms be provided with cross ventilation just below the roof, making it easy for the hot air to vent out by thermosyphon.

<u>Illustrative.</u>

Figure 19 – Blocked cross ventilated class room.

We also suggest to use BLDC fans in Liew of normal ceiling fans which are energy intensive.

WHY SUPER ENERG Y EFFICIENT CEILING FANS?

Regular old ceiling fans.

Ceiling fans escape one's mind when thinking about reducing electricity cost. This forgotten appliance contributes significantly to electricity consumption due to its numbers and hours of usage. The following estimation supports this claim. A regular ceiling fan (1200 mm span) consumes about 75 W at the highest speed. There are

THOUGHT FOR EVERY MOMENT

over 100 regular ceiling fans in the institute and each of them creates an electricity demand about 39W* (consumption at medium speed).

Super energy efficient ceiling fans

At present Brushless Direct Current (BLDC) ceiling fan is the popular choice of <u>super</u> <u>energy efficient ceiling fans</u> in India. There are two premier BLDC ceiling fan brands in India – <u>Superfan</u> (Versa Drives Private Limited) and Gorilla fans (Atomberg Technologies) **. These ceiling fans (1200mm span) consume 35W at the highest speed so they save over 50% of electricity consumption.

The higher efficiency comes with no compromise in air delivery. Now consider replacing all the ceiling fans in the institute with <u>best energy saving ceiling fan</u>. The reduction in electricity demand created by ceiling fans will be:

No of fans (Approximated for computation): 100 Units

Maximum power drawn: 75W/Fan, ie 7500 W ie 7.5 KW

If these fans were to operate for 5 Hours per day, we have 7.5KW x 5 Hours ie **37.5Units** per day.

In the event of replacing these normal fans with BLDC energy efficient fans,

THOUGHT FOR EVERY MOMENT

Maximum power drawn by BLDC fans: 35W/Fan, ie 3500 W ie 3.5 KW

If these BLDC fans were to operate for 5 Hours per day, we have 3.5KW x 5 Hours ie

17.5 Units per day.

The net savings per day would be 20 Units per day. For working of 200 days in a year, the total savings would be 4000 Units.

When converted to revenue, it leads to a savings of ₹28000/-

Now consider, the capex, cost of each fan as ₹3000/-. The net outflow would be ₹3.00 Lacs.

The capex would yield a Return on Investment of around 6 years.

From the finance department point of view, the ROI of 6 years may not be acceptable, but here, we are in an institute where we educate. Hence the ROI discussions are for the purpose of discussions and should not to be seen from business view.

If the same is to be considered for their application in the residence, we find the fans being in operation for over 15 Hours. Leading to ROI of 2 years.

For actual capex, please contact one of the suppliers.,

M/s VERSA DRIVES PRIVATE LIMITED

38 B, Vadakku Thottam Part, Idikarai, Coimbatore. Tamil Nadu, India 641022

L Tel: 0422-2972798 / 2972799 / 2972800

Reference to the audit report may be made to avail educational institute's discount.

THOUGHT FOR EVERY MOMENT

SAFETY.

Sr No	Observation*	Problems*	Resulting losses*	Remedial measures*	Capital*	Projected savings*	Category 7
8	Electric al safety	Failure of electrical equipme nt	Loss of valua ble data and assets.	Proper earthing and periodical maintenance with measurement.	Nil, In house manpo wer.	Eliminates electrical hazards and threat to life. Substantial cost of energy bills	7.1 .2, 7.1 .6

As a technical institution, It is important that the students and visitors are educated on the significance of Earthing, Grounding, Bonding and Shielding. Only if we discuss some of these terms will the students understand the basics of engineering. In view of this, we suggest that all the buildings in the campus be provided with well labelled Earthing, All the machinery are bonded with each other through grounding system and the buildings are shielded from lightning and the sensitive equipment and electronical driven system are safe.

Name plate :	Computer room.			
Earth pit	xxxx system.			
connected to :				
Date of inspection :	dd/mm/yyyy			
Next due date :	Dd/(mm	1+6)/уууу		
Values	Measured values.	Required values.		
Reasistance:	xx Ω	<mark>< 5 Ω</mark>		
Leakage current :	aa Amps.	<mark>< 3.5mA</mark>		

THOUGHT FOR EVERY MOMENT

Monitoring of Earthing is very significant considering the dryness factor. Regular monitoring should be carried out to make sure that the electrical mishaps don't occur.

Electrical mishaps, may be Internal fire due to various faulty connections, It may be failure of light fixtures, loss of computer data, failure of devices, non-switching on of devices or even the abrupt failure of devices during lightning.

A perfect earthing should avoid all of them.

While we discuss about earthing, it is equally important to understand the significance of Bonding and shielding.

Special mention is to be noted that, the earthing of electronic devices such as computer loads, UPS loads and other non-electronic devices should be separately followed. More discussions within the institute should be conducted on,

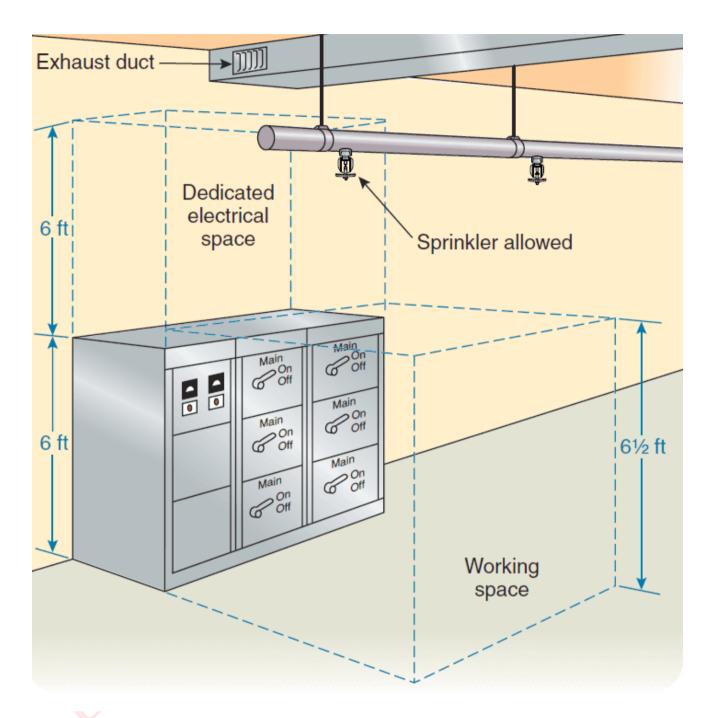
Concept of shielding, bonding, Grounding and/or earthing with

respect to energy saving.

In addition the placement of insulating mat is also equally important for the safety of all the students and staff working on electrical systems. Be it electrical or mechanical or appliances in other areas.

WHERE CAN PANELBOARDS AND LOAD CENTERS BE LOCATED IN MY BUILDING?

In a commercial like building it is typical for space to be dedicated for electrical panels and equipment. We have listed the requirements:


A **panelboard** (also sometimes referred to as a **load center**) is an enclosure which contains overcurrent devices such as fuses or circuit breakers.

In a commercial building it is typical for space to be dedicated for electrical panels and equipment. Often a commercial building will have a main electrical service room and smaller electrical rooms on other floors.

The National Electrical Code requires "clear space", referred to as working space around the panelboard to ensure easy access to the overcurrent devices and to provide adequate space for maintenance and inspection. Working space will vary

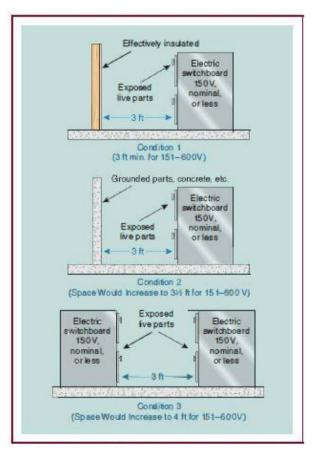
THOUGHT FOR EVERY MOMENT

as a function of the voltage of the electrical equipment and the surrounding equipment and walls as shown in the graphic below.

Working Space & Dedicated Electrical Space According to NFPA 70 (NEC) Dedicated working space must be provided in front of and above the panelboard. The width of the working space in front of the equipment must be at least 30" or the width of the equipment, whichever is greater. The working space also extends

THOUGHT FOR EVERY MOMENT

Description of Clearance	Distance (min)
Left to Right the minimum clearance	0.9 Meter (3 Ft)
Distance between Panel and wall	1.0 Meter
Distance between Panel and Ceiling	0.9 Meter
Clear Height in front of Panel >480V	2.0 Meter
Clear Height in front of Panel <480V	0.9 Meter (3 Ft)
Clearance When Facing Other Electrical Panels <480V	0.9 Meter (3 Ft)
The width of the working space in front of the Panel	The width of Panel or 0.762 Meter which is Greater.
Headroom of working spaces for panel boards (<i>Up to 200Amp</i>)	Up to 2 Meter


vertically from the floor or grade to a height of at least 6-1/2' or the height of the equipment, whichever is greater. These requirements are found in article 110.26 and table 110.26(A)(1) of the National Electrical Code.

Panelboards may be installed indoors or outdoors. Panelboards must be installed

using the appropriate NEMA rating for the environment in which they are used. Panelboards installed indoors typically have NEMA 1 rating while panelboards installed outdoors typically have a NEMA 3R rating to summurise, the table lists the basic dimentions, under NEC 110.26

ELECTRICAL INSULATING MATS

Installing electrical insulating mats in your workplace are necessary for prevention against current leakage while working on DC or AC installations. Insulating mats

THOUGHT FOR EVERY MOMENT

ensures the safety of the workers who operate on live electronic equipment. These insulating mats must meet all the requirements of IS 15652 Standard and to be approved by third party NABL accredited testing agencies.

These insulating mats are manufactured with elastomer (rubber, pvc and elastomeric compounds). It also comes with anti-skid aberrations to avoid slippage. The dotted anti-skid design makes the appearance of these electrical safety mats more appealing.

THOUGHT FOR EVERY MOMENT

LIST OF INSTRUMENTS:

During the process of the Audit, the following lists of instruments were used.

Sr No.	INSTRUMENT	MAKE	APPLICATION
1	Digital Power Analyser (PC Interfaced)	SCHIVAN ARNOX	Electrical Machinery.
2	Accessories -3000 Amps	ARNOX	Higher load UPTO 3000 Amps,
3	Accessories -200 Amps	ARNOX	UPTO 200 Amps,
4	Thermal Imager	FLIR	Identify loose contacts and bearing losses
5	Power Analyser (Manual)	MECO	Electrical Machinery.
6	Infrared Thermometer	METRAVI	Thermal (Fuel) Energy.
7	Digital (Contact) Temperature & Humidity Meter.	METRAVI	Electrical Machinery. (A/C's and Cooling Towers)
8	Digital Tachometer	METRAVI	Electrical Machinery. (A/C's and Cooling Towers)
9	Lux Meter	METRAVI	General & Task Lighting.
10	Sound Level Meter	METRAVI	Electrical Machinery. Generator Sound Proofing
11	Digital Anemometer	METRAVI	Electrical Machinery. (A/C's and Cooling Towers)
12	Digital KW Meter	METRAVI	Electrical Machinery.
13	Digital Power Factor Meter	METRAVI	Electrical Machinery.
14	Lap Top Computer	HP	To Interface the Instruments For More Accurate -Sophisticated Readings In Sensitive Equipments.

THOUGHT FOR EVERY MOMENT

15	Ultrasonic flow meter		Measure liquid flow.
16	Portable Vibration Meter.	METRAVI	Effect Of Filtration - Sewing System. Structural Stability
17	Live cable detector probe	-	Detect hidden cables for safety audit.
18	Power Analyser – EMM 5	Beluk	For remote communication and detailed audit.
19	Power Analyser – ELITE PRO	Beluk	Power Analyser.
20	ETV meter, KWh & PF meters for site recording.	Secure	
21	PT's for Transformer audits.	KALPA	On field auditing of transformer loading and imbalance evaluation.

Only appropriate instruments will used wherever necessary.

THOUGHT FOR EVERY MOMENT

ACTION PLAN SUMMARY:

- Earmark the action plan.
- Invite subject experts for Tec talks,
- Organize in person panel discussions and interaction to propagate the knowledge and mitigate the problems in practicing the same.
- Prioritize the initiatives and execute.
- Observe the benefits and shortcomings.
- Workout further improvement by involving the staff and students.

MODE OF ACTION:

The process of ENERGY AUDIT & ENERGY CONSERVATION should be carried out in three steps.

- Good housekeeping practices using available manpower.
- Minor alterations using in house work culture with minimum investments on accessories as discussed.
- Capital investments, which may be required for installation of new methodologies may be taken up on phased manner.

We will be happy to assist you for any further advice/consultancy if required either on Rainwater management or on any of the measures discussed in the report.

We hope the measures are implemented in good spirit and to human convenience and comfort.

For SUNSHUBH TECHNOVATIONS PVT LTD.,

Mallikarjun A. Kambalyal. B.E. (E&C) Certified Energy Auditors EA-3485

THOUGHT FOR EVERY MOMENT

NOTES:

THOUGHT FOR EVERY MOMENT

Notes:

THOUGHT FOR EVERY MOMENT

Notes:

THOUGHT FOR EVERY MOMENT